题目:设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,
证明:
(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);
(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
题目:设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,
证明:
(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);
(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).